• ВХОД
  •  

    Полное описание

    Advanced Methods of Solid Oxide Fuel Cell Modeling : монография / by Jarosław Milewski, Konrad Świrski, Massimo Santarelli, Pierluigi Leone. - London : Springer, 2011. - on-line. - (Green Energy and Technology, ISSN 1865-3529). - URL: http://dx.doi.org/10.1007/978-0-85729-262-9. - Загл. с экрана. - ISBN 978-0-85729-262-9. - Текст : электронный.
    Содержание:
    1. Introduction -- 2. Theory -- 3. Advanced Methods in Mathematical Modeling -- 4. Experimental Investigation -- 5. SOFC Modeling.

    ГРНТИ УДК
    44.41621.352.6-047.58

    Рубрики:
    mathematics
    chemical engineering
    artificial intelligence
    mathematical models
    power electronics
    mathematics
    mathematical Modeling and Industrial Mathematics
    industrial Chemistry/Chemical Engineering
    power Electronics, Electrical Machines and Networks
    artificial Intelligence (incl Robotics)

    Аннотация: Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. Advanced Methods of Solid Oxide Fuel Cell Modeling proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. Advanced Methods of Solid Oxide Fuel Cell Modeling provides a comprehensive description of modern fuel cell theory and a guide to the mathematical modeling of SOFCs, with particular emphasis on the use of ANNs. Up to now,  most of the equations involved in SOFC models have required the addition of numerous factors that are difficult to determine. The artificial neural network (ANN) can be applied to simulate an object’s behavior without an algorithmic solution, merely by utilizing available experimental data. The ANN methodology discussed in Advanced Methods of Solid Oxide Fuel Cell Modeling can be used by both researchers and professionals to optimize SOFC design. Readers will have access to detailed material on universal fuel cell modeling and design process optimization, and will also be able to discover comprehensive information on fuel cells and artificial intelligence theory.
    Доп. точки доступа:
    Milewski, J.
    Świrski, K.
    Santarelli, M.
    Leone, P.

    http://dx.doi.org/10.1007/978-0-85729-262-9


    Держатели документа:
    Государственная публичная научно-техническая библиотека России : 123298, г. Москва, ул. 3-я Хорошевская, д. 17 (Шифр в БД-источнике (KATBW): -923815528)

    Шифр в сводном ЭК: d3a418b56c203db2535c078492017d77



    Просмотр издания